SmartPool: Decentralized mining pools using smart contracts

Loi Luu Cofounder, SmartPool.io PhD candidate, National University of Singapore

Agenda

- What is pooled mining
- Why centralized mining pool is not ideal
- SmartPool

What is mining

- Probabilistically elect leader to propose blocks
 - By solving proof of work
- A way to issue more coins
 - 12.5 BTC per 1 Bitcoin block
 - 5 ETH per 1 Ethereum block

How to mine a block

To mine a block, we need to find a nonce so that
 Hash(BlockHeader, nonce) ≤ d

or

Hash(BlockHeader, nonce, dataset) ≤ d

- Finding a valid nonce is hard
 - Normal computers are nearly impossible to ever find a nonce

Mining pool

- Group of miners join hand to mine blocks together
- Rewards are split among miners based on their contribution
 - Reduce variance
 - Receive smaller rewards frequently

How mining pools work

- Pools track miners' contribution by using shares
 - A share is similar to a block, but required less work to find

```
Valid block Hash(BlockHeader, nonce) ≤ d
```

Valid share $Hash(BlockHeader, nonce) \le D$ with D >> d

Each share has probability d/D being a valid block

How mining pools work

Pool operator records the shares, and distribute reward accordingly

Pooled mining is great

- For miners
 - Allow them to have stable income
 - Low variance means easier to plan economically
- For the network
 - Help increase the security of the network by allowing more miners to join the mining

Pooled mining issues

- Mining in cryptocurrencies is highly centralized
 - 3-5 pools control majority of hash power

Bitcoin's mining power distribution

Ethereum's mining power distribution

Pooled mining issues (2)

- Implicit trust
 - Miners trust pool to record shares and pay correctly
- Transaction censorship threat
 - Pools decide which transactions to include, not the miners
- Single point of failures

SMARTPOOL: REPLACING POOL OPERATOR BY A SMART CONTRACT

Naïve solution

Naïve solution's Problems

- Number of shares is huge
 - May reach millions per block
 - Require as many messages to the contract
- Cost (gas) to verify a Ethash PoW is expensive
 - May be more than the reward per share
- Verifying a PoW was not even technically feasible
 - Require access to 1GB data set
 - Smart contract storage is costly (around \$76,000 USD per GB)

 $Hash(BlockHeader, nonce, dataset) \leq d$

SmartPool – Solution

- Allow batch submissions (up to millions of shares)
 - significantly reduce number of messages over the network

SmartPool – Solution (2)

- Probabilistic verification to check a submission
 - Randomly verify only one share per submission
 - Pr[of cheating detected] is proportional to the amount of cheating

SmartPool: Disincentivize cheating

- Payment scheme: pay 0 for a submission if cheating detected
 - Expected reward is the same whether cheating or not
 - Miners have no incentive to cheat
- If we sample more than 1 share, can strongly disincentivize cheating miners

SmartPool: Efficiently Verify Ethash PoW

- Verify Ethash PoW was thought to be impossible
 - Although the 1GB dataset is generated from the 16 MB seed,
 its still expensive to store the entire 16MB
 - Would cost hundreds of Ether
 - The 16MB data set changes every 30k blocks (4-5 days)
 - Even if we can store the 16 MB seed, it is still not possible
 - Getting the element in the 1Gb dataset from the 16MB seed is expensive
 - E.g. requires 8 SHA-512 computations per element, will run out of gas

Hash(BlockHeader, nonce, dataset) ≤ d

Our solution: only verify the result of Ethash

Observation

 We do not need the entire 1GB data set or the 16Mb seed, we only care about the correctness 64 elements sampled by the nonce and the block header

Solution

- Store the Merkle root of the 1GB dataset in the contract
- Require the miners to send the merkle proof for each data element

SmartPool's Ethash in Testnet

- We self-implement the SHA-512 in solidity
 - Cost is 200k of gas per computation
- Fully verify an Ethash PoW with 4.1M of gas
- Our solution can be used to build a lighter light-client

More in the white paper

- How to prevent miners from stealing others' shares?
- How to prevent claiming a share multiple times
 - Within a submission
 - Across submissions
- How to run mining pools for other cryptocurrencies on Ethereum

SmartPool: Features and Plan

Features

- Totally decentralized
- Secure
- Efficient and scalable
- Open source and non-profit

Plan

- Testnet deployment in March
- Mainnet deployment in June
- Supporting other cryptocurrencies depends on funding

SmartPool.io is calling for donation

WE ARE CALLING FOR DONATIONS

Current donated amount: 1633.77856 ETH

Our addresses

Ethereum: 0x98F62d8aD5a884C8bbcf262591DFF55DAb263B80

Bitcoin: 1Cs3D54RqjhNwHurj97qQpbiDSYw1EkjPC

ZCash: t1eZFVNbvfgGShyPX4RzScLd76apdVoD2qN

Conclusion

- Blockchain & smart contract help remove middle man/centralized operators
 - Decentralized mining pools is one example.
- Smart contract are not the solution for everything
 - More thoughts on the design and implementations required

Acknowledgement

• Ethereum Foundation

DinarDirham

24 pseudonymous donors

Thank you – Q&A

